
Embedded Coder®

Getting Started Guide

R2019b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Embedded Coder® Getting Started Guide
© COPYRIGHT 2011–2019 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
April 2011 Online only New for Version 6.0 (Release 2011a)
September 2011 Online only Revised for Version 6.1 (Release 2011b)
March 2012 Online only Revised for Version 6.2 (Release 2012a)
September 2012 Online only Revised for Version 6.3 (Release 2012b)
March 2013 Online only Revised for Version 6.4 (Release 2013a)
September 2013 Online only Revised for Version 6.5 (Release 2013b)
March 2014 Online only Revised for Version 6.6 (Release 2014a)
October 2014 Online only Revised for Version 6.7 (Release 2014b)
March 2015 Online only Revised for Version 6.8 (Release 2015a)
September 2015 Online only Revised for Version 6.9 (Release 2015b)
October 2015 Online only Rereleased for Version 6.8.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 6.10 (R2016a)
September 2016 Online only Revised for Version 6.11 (Release 2016b)
March 2017 Online only Revised for Version 6.12 (Release 2017a)
September 2017 Online only Revised for Version 6.13 (Release 2017b)
March 2018 Online only Revised for Version 7.0 (Release 2018a)
September 2018 Online only Revised for Version 7.1 (Release 2018b)
March 2019 Online only Revised for Version 7.2 (Release 2019a)
September 2019 Online only Revised for Version 7.3 (Release 2019b)

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks reports
critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. In the search bar, type the phrase "Incorrect
Code Generation" to obtain a report of known bugs that produce code that might compile
and execute, but still produce wrong answers. To save a search, click Save Search.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies
between the actual behavior of a release you are using and the behavior described in this
documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

https://www.mathworks.com/support/bugreports/

Product Overview
1

Embedded Coder Product Description . 1-2
Key Features . 1-2

Code Generation by Using Embedded Coder 1-3
Code Generation Technology . 1-3
Code Generation Workflows with Embedded Coder 1-3

Validation and Verification for System Development 1-7
V-Model for System Development . 1-7
Types of Simulation and Prototyping in the V-Model 1-9
Types of In-the-Loop Testing in the V-Model 1-10
Code Generation Goal Summary . 1-11

Target Environments and Applications 1-29
About Target Environments . 1-29
Types of Target Environments . 1-29
Applications of Supported Target Environments 1-31

MATLAB Tutorials
2

Embedded Coder Capabilities for Code Generation from
MATLAB Code . 2-2

Controlling C Code Style . 2-9
About This Tutorial . 2-9
Copy File to a Local Working Folder 2-10
Open the MATLAB Coder App . 2-10
Specify Source Files . 2-10

vii

Contents

Define Input Types . 2-11
Check for Run-Time Issues . 2-11
Configure Code Generation Parameters 2-12
Generate C Code . 2-12
View the Generated Code . 2-12
Finish the Workflow . 2-13
Key Points to Remember . 2-14

Include Comments in Generated C/C++ Code 2-15
About This Tutorial . 2-15
Creating the MATLAB Source File . 2-15
Configuring Build Parameters . 2-16
Generating the C Code . 2-16
Viewing the Generated C Code . 2-17
Tracing the Generated Code to the MATLAB Code 2-17

Simulink Code Generation Tutorials
3

Generate C Code from Simulink Models 3-2
Prerequisites . 3-2
Example Models . 3-2

Generate Code by Using Embedded Coder Quick Start 3-6

Configure Data Interface . 3-11
Configure Default Code Generation for Data 3-11
Override Default Settings for Individual Data Elements 3-15

Configure a Model Parameter as a Global Variable for Tuning
During Run Time . 3-17

Compare Model Simulation and Generated Code Results . . . 3-20
Inspect and Configure Test Harness Model 3-20
Simulate the Model in Normal Mode 3-21
Simulate the Model in SIL Mode . 3-23
Compare Simulation Results . 3-23

Deploy the Generated Code . 3-25
Example Main Program . 3-25

viii Contents

Relocate Generated Code Files . 3-25
Share and Archive Code Generation Report 3-26
Explore Other Options . 3-27

Getting Started with Embedded Coder 3-28

ix

Product Overview

• “Embedded Coder Product Description” on page 1-2
• “Code Generation by Using Embedded Coder” on page 1-3
• “Validation and Verification for System Development” on page 1-7
• “Target Environments and Applications” on page 1-29

1

Embedded Coder Product Description
Generate C and C++ code optimized for embedded systems

Embedded Coder generates readable, compact, and fast C and C++ code for embedded
processors used in mass production. It extends MATLAB® Coder™ and Simulink® Coder
with advanced optimizations for precise control of the generated functions, files, and
data. These optimizations improve code efficiency and facilitate integration with legacy
code, data types, and calibration parameters. You can incorporate a third-party
development tool to build an executable for turnkey deployment on your embedded
system or rapid prototyping board.

Embedded Coder offers built-in support for AUTOSAR, MISRA C®, and ASAP2 software
standards. It also provides traceability reports, code documentation, and automated
software verification to support DO178, IEC 61508, and ISO 26262 software
development. Embedded Coder code is portable, and can be compiled and executed on
any processor. In addition, it offers support packages with advanced optimizations and
device drivers for specific hardware.

Key Features
• Optimization and code configuration options extending MATLAB Coder and Simulink

Coder
• Storage class, type, and alias definition using data dictionaries
• Multirate, multitask, and multicore code execution with or without an RTOS
• Code verification, including SIL and PIL testing, custom comments, and code reports

with tracing of models to and from code and requirements
• Standards support, including ASAP2, AUTOSAR, DO-178, IEC 61508, ISO 26262, and

MISRA C (with Simulink)
• Advanced code optimizations and device drivers for specific hardware, including

ARM®, Intel®, NXP™, STMicroelectronics®, and Texas Instruments™

1 Product Overview

1-2

Code Generation by Using Embedded Coder

Code Generation Technology
MathWorks® code generation technology produces C or C++ code and executable
programs for algorithms. You can write algorithms programmatically by using MATLAB or
graphically in the Simulink environment. You can generate code for MATLAB functions
and Simulink blocks that are useful for real-time and embedded applications. Generated
source code and executable programs for floating-point algorithms match the functional
behavior of MATLAB code execution and Simulink simulations to a high degree of fidelity.
Using the Fixed-Point Designer product, you can generate fixed-point code that provides a
bitwise match to model simulation results. Such broad support and high degree of
accuracy are possible because code generation is tightly integrated with the MATLAB and
Simulink execution and simulation engines. The built-in accelerated simulation modes in
Simulink use code generation technology.

Code generation technology and related products provide tooling that you can apply to
the V-model for system development. The V-model is a representation of system
development that highlights verification and validation steps in the development process.
For more information, see “Validation and Verification for System Development” on page
1-7.

To learn about model design patterns that include Simulink blocks, Stateflow® charts, and
MATLAB functions, and map to commonly used C constructs, see “Modeling Patterns for
C Code”.

Code Generation Workflows with Embedded Coder
The Embedded Coder product extends the MATLAB Coder and Simulink Coder products
with features that you can use for embedded software development. Using the Embedded
Coder product, you can generate code that has the clarity and efficiency of handwritten
code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time simulators,
rapid prototyping boards, microprocessors used in mass production, and embedded
systems.

• Customize the appearance of the generated code.
• Optimize generated code for a specific target environment.

 Code Generation by Using Embedded Coder

1-3

https://www.mathworks.com/products/fixed-point-designer.html

• Integrate existing applications, functions, and data.
• Enable tracing, reporting, and testing options that facilitate code verification.

The code generator supports two workflows for designing, implementing, and verifying
generated C or C++ code. The following figure shows the design and deployment
environment options.

Other products that support code generation, such as Stateflow software, are available.

To develop algorithms with MATLAB code for code generation, see “Code Generation
from MATLAB Code” on page 1-5.

To implement algorithms as Simulink blocks and Stateflow charts in a Simulink model,
and generate C or C++ code, see “Code Generation from Simulink Models” on page 1-
5.

1 Product Overview

1-4

Code Generation from MATLAB Code

Code generation from the MATLAB code workflow with Embedded Coder requires the
following products:

• MATLAB
• MATLAB Coder
• Embedded Coder

MATLAB Coder supports a subset of core MATLAB language features, including program
control constructs, functions, and matrix operations. To generate C or C++ code, you can
use MATLAB Coder projects or enter the function codegen in the MATLAB Command
Window. Embedded Coder provides additional options and advanced optimizations for
fine-grain control of generated code functions, files, and data. For more information about
these options and optimizations , see “Embedded Coder Capabilities for Code Generation
from MATLAB Code” on page 2-2.

For more information about generating code from MATLAB code, see “Code Generation
Workflow” (MATLAB Coder).

To get started generating code from MATLAB code using Embedded Coder, see
“Embedded Coder Capabilities for Code Generation from MATLAB Code” on page 2-2.

Code Generation from Simulink Models

Code generation from the Simulink models workflow with Embedded Coder requires the
following products:

• MATLAB
• MATLAB Coder
• Simulink
• Simulink Coder
• Embedded Coder

You can implement algorithms as Simulink blocks and Stateflow charts in a Simulink
model. To generate C or C++ code from a Simulink model, Embedded Coder provides
features for implementing, configuring, and verifying your model for code generation.

If you have algorithms written in MATLAB code, you can include the MATLAB code in a
Simulink model or subsystem by using the MATLAB Function block. When you generate C

 Code Generation by Using Embedded Coder

1-5

or C++ code for a Simulink model, the MATLAB code in the MATLAB Function block is
generated into C or C++ code and included in the generated source code.

To get started generating code from Simulink models using Embedded Coder, see
“Generate C Code from Simulink Models” on page 3-2.

To learn how to model and generate code for commonly used C constructs using Simulink
blocks, Stateflow charts, and MATLAB functions, see “Modeling Patterns for C Code”.

1 Product Overview

1-6

Validation and Verification for System Development
An approach to validating and verifying system development is the V-model.

V-Model for System Development
The V-model is a representation of system development that highlights verification and
validation steps in the system development process. The left side of the ‘V’ identifies steps
that lead to code generation, including system specification and detailed software design.
The right side of the V focuses on the verification and validation of steps cited on the left
side, including software and system integration.

 Validation and Verification for System Development

1-7

Depending on your application and its role in the process, you might focus on one or more
of the steps called out in the V-model or repeat steps at several stages of the V-model.
Code generation technology and related products provide tooling that you can apply to
the V-model for system development. For more information about how you can apply
MathWorks code generation technology and related products to the V-model process, see:

• “Types of Simulation and Prototyping in the V-Model” on page 1-9

1 Product Overview

1-8

• “Types of In-the-Loop Testing in the V-Model” on page 1-10
• “Code Generation Goal Summary” on page 1-11

Types of Simulation and Prototyping in the V-Model
This table compares the types of simulation and prototyping identified on the left side of
the V-model diagram shown in “V-Model for System Development” on page 1-7.

 Simulation Rapid Simulation System
Simulation, Rapid
Prototyping

Rapid Prototyping
on Target
Hardware

Purpose Test and validate
functionality of
concept model

Refine, test, and
validate
functionality of
concept model in
nonreal time

Test new ideas and
research

Refine and calibrate
design during
development
process

Execution
hardware

Development
computer

Development
computer

Standalone
executable runs
outside of MATLAB
and Simulink
environments

PC or nontarget
hardware

Embedded
computing unit
(ECU) or near-
production
hardware

Code
efficiency
and I/O
latency

Not applicable Not applicable Less emphasis on
code efficiency and
I/O latency

More emphasis on
code efficiency and
I/O latency

 Validation and Verification for System Development

1-9

 Simulation Rapid Simulation System
Simulation, Rapid
Prototyping

Rapid Prototyping
on Target
Hardware

Ease of use
and cost

Can simulate
component
(algorithm or
controller) and
environment (or
plant)

Normal mode
simulation in
Simulink enables
you to access,
display, and tune
data during
verification

Can accelerate
Simulink
simulations

Easy to simulate
models of hybrid
dynamic systems
that include
components and
environment
models

Ideal for batch or
Monte Carlo
simulations

Can repeat
simulations with
varying data sets,
interactively or
programmatically
by using scripts,
without rebuilding
the model

Can connect to
Simulink to monitor
signals and tune
parameters

Might require
custom real-time
simulators and
hardware

Might be done with
inexpensive, off-the-
shelf PC hardware
and I/O cards

Might use existing
hardware for less
expense and more
convenience

Types of In-the-Loop Testing in the V-Model
This table compares types of in-the-loop testing for verification identified on the right side
of the V-model diagram shown in “V-Model for System Development” on page 1-7.

 SIL Simulation PIL Simulation on
Embedded
Hardware

PIL Simulation
on Instruction
Set Simulator

HIL Simulation

Purpose Verify component
source code

Verify component
object code

Verify component
object code

Verify system
functionality

1 Product Overview

1-10

 SIL Simulation PIL Simulation on
Embedded
Hardware

PIL Simulation
on Instruction
Set Simulator

HIL Simulation

Fidelity and
accuracy

Two options:

Same source code
as target, but might
have numerical
differences

Changes source
code to emulate
word sizes, but is
bit accurate for
fixed-point math

Same object code

Bit accurate for
fixed-point math

Cycle accurate
because code runs
on hardware

Same object code

Bit accurate for
fixed-point math

Might not be cycle
accurate

Same executable
code

Bit accurate for
fixed-point math

Cycle accurate

Use real and
emulated system
I/O

Execution
platforms

Development
computer

Target hardware Development
computer

Target hardware

Ease of use
and cost

Desktop
convenience

Executes only in
Simulink

Reduces hardware
cost

Executes on
desktop or test
bench

Uses hardware —
process board and
cables

Desktop
convenience

Executes on
development
computer with
Simulink and
integrated
development
environment (IDE)

Reduces hardware
cost

Executes on test
bench or in a lab

Uses hardware —
processor,
embedded
computer unit
(ECU), I/O devices,
and cables

Real-time
capability

Not real time Not real time
(between samples)

Not real time
(between samples)

Hard real time

Code Generation Goal Summary
These tables list goals that you might have, as you apply code generation technology, and
where to find guidance on how to meet those goals.

 Validation and Verification for System Development

1-11

• Document and Validate Requirements
• Develop System Specification
• Develop Detailed Software Design
• Generate Application Code
• Integrate and Verify Software
• Integrate, Verify, and Calibrate System Components

You can open and run the examples linked below and generate code.

1 Product Overview

1-12

Document and Validate Requirements

Goals Related Product Information Examples
Capture requirements in a
document, spreadsheet, data
base, or requirements
management tool

“Simulink Report Generator”

Third-party vendor tools such as
Microsoft® Word, Microsoft
Excel®, raw HTML, or IBM®

Rational® DOORS®

Associate requirements
documents with objects in
concept models

Generate a report on
requirements associated with a
model

“Requirements Management
Interface” (Simulink
Requirements)

Bidirectional tracing in Microsoft
Word, Microsoft Excel, HTML, and
IBM Rational DOORS

slvnvdemo_fuelsys_docre
q

Include requirements links in
generated code

“Review and Maintain
Requirements Links” (Simulink
Requirements)

rtwdemo_requirements

Trace model elements and
subsystems to generated code
and vice versa

“Code Tracing” rtwdemo_hyperlinks

Verify, refine, and test concept
model in non real time on a
development computer

“Model Architecture and Design”
(Simulink Coder)

“Model Architecture and Design”

“Simulation” (Simulink)

“Acceleration” (Simulink)

“Air-Fuel Ratio Control
System with Stateflow
Charts” (Simulink Coder)

 Validation and Verification for System Development

1-13

matlab:slvnvdemo_fuelsys_docreq
matlab:slvnvdemo_fuelsys_docreq
matlab:rtwdemo_requirements
matlab:rtwdemo_hyperlinks

Goals Related Product Information Examples
Run standalone rapid
simulations

Run batch or Monte-Carlo
simulations

Repeat simulations with varying
data sets, interactively or
programmatically with scripts,
without rebuilding the model

Tune parameters and monitor
signals interactively

Simulate models for hybrid
dynamic systems that include
components and an
environment or plant that
requires variable-step solvers
and zero-crossing detection

“Accelerate, Refine, and Test
Hybrid Dynamic System on Host
Computer by Using RSim System
Target File” (Simulink Coder)

“Host-Target Communication with
External Mode Simulation”
(Simulink Coder)

“Run Rapid Simulations Over
Range of Parameter Values”
(Simulink Coder)

“Run Batch Simulations
Without Recompiling
Generated Code” (Simulink
Coder)

“Use MAT-Files to Feed Data
to Inport Blocks for Rapid
Simulations” (Simulink
Coder)

Distribute simulation runs
across multiple computers

“Simulink Test”

“MATLAB Parallel Server”

“Parallel Computing Toolbox”

1 Product Overview

1-14

Develop System Specification

Goals Related Product Information Examples
Produce design artifacts for
algorithms that you develop in
MATLAB code for reviews and
archiving

“MATLAB Report Generator”

Produce design artifacts from
Simulink and Stateflow models
for reviews and archiving

“System Design Description”
(Simulink Report Generator)

rtwdemo_codegenrpt

Add one or more components to
another environment for system
simulation

Refine a component model

Refine an integrated system
model

Verify functionality of a model in
nonreal time

Test a concept model

“Deploy Algorithm Model for
Real-Time Rapid Prototyping”
(Simulink Coder)

Schedule generated code “Absolute and Elapsed Time
Computation” (Simulink Coder)

“Time-Based Scheduling and
Code Generation” (Simulink
Coder)

“Asynchronous Events”
(Simulink Coder)

“Time-Based Scheduling
Example Models” (Simulink
Coder)

Specify function boundaries of
system

“Subsystems” (Simulink Coder) rtwdemo_atomic
rtwdemo_ssreuse
rtwdemo_filepart
rtwdemo_exporting_functi
ons

 Validation and Verification for System Development

1-15

matlab:rtwdemo_codegenrpt
matlab:rtwdemo_atomic
matlab:rtwdemo_ssreuse
matlab:rtwdemo_filepart
matlab:rtwdemo_exporting_functions
matlab:rtwdemo_exporting_functions

Goals Related Product Information Examples
Specify components and
boundaries for design and
incremental code generation

“Component-Based Modeling”
(Simulink Coder)

“Component-Based Modeling”

rtwdemo_mdlreftop

Specify function interfaces so
that external software can
compile, build, and invoke the
generated code

“Function and Class Interfaces”
(Simulink Coder)

“Function and Class Interfaces”

rtwdemo_fcnprotoctrl
rtwdemo_cppclass

Manage data packaging in
generated code for integrating
and packaging data

“File Packaging” (Simulink
Coder)

“File Packaging”

rtwdemo_ssreuse
rtwdemo_mdlreftop
rtwdemo_advsc

Generate and control the format
of comments and identifiers in
generated code

“Configure Code Comments”

“Construction of Generated
Identifiers”

rtwdemo_comments
rtwdemo_symbols

Create a zip file that contains
generated code files, static files,
and dependent data to build
generated code in an
environment other than your
host computer

“Relocate Code to Another
Development Environment”
(Simulink Coder)

rtwdemo_buildinfo

Export models for validation in
a system simulator using shared
libraries

“Package Generated Code as
Shared Libraries”

rtwdemo_shrlib

1 Product Overview

1-16

matlab:rtwdemo_mdlreftop
matlab:rtwdemo_fcnprotoctrl
matlab:rtwdemo_cppclass
matlab:rtwdemo_ssreuse
matlab:rtwdemo_mdlreftop
matlab:rtwdemo_advsc
matlab:rtwdemo_comments
matlab:rtwdemo_symbols
matlab:rtwdemo_buildinfo
matlab:rtwdemo_shrlib

Goals Related Product Information Examples
Refine component and
environment model designs by
rapidly iterating between
algorithm design and
prototyping

Verify whether a component can
adequately control a physical
system in non-real time

Evaluate system performance
before laying out hardware,
coding production software, or
committing to a fixed design

Test hardware

“Deployment” (Simulink Coder)

“Deployment”

Generate code for rapid
prototyping

“Function and Class Interfaces”
(Simulink Coder)

“Configure Code Generation for
Model Entry-Point Functions”
(Simulink Coder)

“Generate Modular Function
Code for Nonvirtual
Subsystems”

rtwdemo_counter
rtwdemo_counter_msvc
rtwdemo_async

Generate code for rapid
prototyping in hard real time,
using PCs

“Simulink Real-Time” “Create and Run Real-Time
Application from Simulink
Model” (Simulink Real-Time)

Generate code for rapid
prototyping in soft real time,
using PCs

“Simulink Desktop Real-Time” sldrtex_vdp (and others)

 Validation and Verification for System Development

1-17

matlab:rtwdemo_counter
matlab:rtwdemo_counter_msvc
matlab:rtwdemo_async
matlab:sldrtex_vdp

Develop Detailed Software Design

Goals Related Product Information Examples
Refine a model design for
representation and storage of
data in generated code

“Data Access for Prototyping and
Debugging” (Simulink Coder)

“Data Representation and
Access”

Select code generation features
for deployment

“Run-Time Environment
Configuration” (Simulink Coder)

“Run-Time Environment
Configuration”

“Sharing Utility Code”

“AUTOSAR Code Generation”

rtwdemo_counter
rtwdemo_counter_msvc
rtwdemo_async
“AUTOSAR Workflow Samples”
(AUTOSAR Blockset)

Specify target hardware
settings

“Run-Time Environment
Configuration” (Simulink Coder)

“Run-Time Environment
Configuration”

rtwdemo_targetsettings

Design model variants “Define, Configure, and Activate
Variants” (Simulink)

“Variant Systems”

Specify fixed-point algorithms
in Simulink, Stateflow, and the
MATLAB language subset for
code generation

“Data Types and Scaling” (Fixed-
Point Designer)

“Fixed-Point Code Generation
Support” (Fixed-Point Designer)

rtwdemo_fixpt1
“Air-Fuel Ratio Control System
with Fixed-Point Data”

Convert a floating-point model
or subsystem to a fixed-point
representation

“Convert to Fixed Point” (Fixed-
Point Designer)

fxpdemo_fpa

Iterate to obtain an optimal
fixed-point design, using
autoscaling

“Data Types and Scaling” (Fixed-
Point Designer)

fxpdemo_feedback

1 Product Overview

1-18

matlab:rtwdemo_counter
matlab:rtwdemo_counter_msvc
matlab:rtwdemo_async
matlab:rtwdemo_targetsettings
matlab:rtwdemo_fixpt1
matlab:showdemo fxpdemo_fpa
matlab:showdemo fxpdemo_feedback

Goals Related Product Information Examples
Create or rename data types
specifically for your application

“Control Data Type Names in
Generated Code”

rtwdemo_udt

Control the format of identifiers
in generated code

“Construction of Generated
Identifiers”

rtwdemo_symbols

Specify how signals, tunable
parameters, block states, and
data objects are declared,
stored, and represented in
generated code

“Apply Built-In and Customized
Storage Classes to Data
Elements”

rtwdemo_cscpredef

Create a data dictionary for a
model

“What Is a Data Dictionary?”
(Simulink)

rtwdemo_advsc

Relocate data segments for
generated functions and data
using #pragmas for calibration
or data access

“Control Data and Function
Placement in Memory by
Inserting Pragmas”

rtwdemo_memsec

Assess and adjust model
configuration parameters based
on the application and an
expected run-time environment

“Model Configuration” (Simulink
Coder)

“Model Configuration”

“Generate Code Using
Simulink® Coder™” (Simulink
Coder)
“Generate Code Using
Embedded Coder®”

Check a model against basic
modeling guidelines

“Check Your Model Using the
Model Advisor” (Simulink)

rtwdemo_advisor1

Add custom checks to the
Simulink Model Advisor

“Create Model Advisor Checks”
(Simulink Check)

slvnvdemo_mdladv

Check a model against custom
standards or guidelines

“Check Your Model Using the
Model Advisor” (Simulink)

Check a model against industry
standards and guidelines
(MathWorks Automotive
Advisory Board (MAAB), IEC
61508, IEC 62304, ISO 26262,
EN 50128 and DO-178)

“Standards, Guidelines, and
Block Usage”

“Check Model Compliance”
(Simulink Check)

rtwdemo_iec61508

 Validation and Verification for System Development

1-19

matlab:rtwdemo_udt
matlab:rtwdemo_symbols
matlab:rtwdemo_cscpredef
matlab:rtwdemo_advsc
matlab:rtwdemo_memsec
matlab:rtwdemo_advisor1
matlab:slvnvdemo_mdladv
matlab:rtwdemo_iec61508

Goals Related Product Information Examples
Obtain model coverage for
structural coverage analysis
such as MCDC

“Simulink Coverage”

Prove properties and generate
test vectors for models

Simulink Design Verifier™ sldvdemo_cruise_control
sldvdemo_cruise_control_
verification

Generate reports of models and
software designs

“MATLAB Report Generator”

“Simulink Report Generator”

“System Design Description”
(Simulink Report Generator)

rtwdemo_codegenrpt

Conduct reviews of your model
and software designs with
coworkers, customers, and
suppliers who do not have
Simulink available

“Model Web Views” (Simulink
Report Generator)

slxml_sfcar

Refine the concept model of
your component or system

Test and validate the model
functionality in real time

Test the hardware

Obtain real-time profiles and
code metrics for analysis and
sizing based on your embedded
processor

Assess the feasibility of the
algorithm based on integration
with the environment or plant
hardware

“Deployment” (Simulink Coder)

“Deployment”

“Code Execution Profiling”

“Static Code Metrics”

rtwdemo_sil_topmodel

1 Product Overview

1-20

matlab:sldvdemo_cruise_control
matlab:sldvdemo_cruise_control_verification
matlab:sldvdemo_cruise_control_verification
matlab:rtwdemo_codegenrpt
matlab:showdemo slxml_sfcar
matlab:rtwdemo_sil_topmodel

Goals Related Product Information Examples
Generate source code for your
models, integrate the code into
your production build
environment, and run it on
existing hardware

“Code Generation” (Simulink
Coder)

“Code Generation”

rtwdemo_counter
rtwdemo_counter_msvc
rtwdemo_fcnprotoctrl
rtwdemo_cppclass
rtwdemo_async
“AUTOSAR Workflow Samples”
(AUTOSAR Blockset)

Integrate existing externally
written C or C++ code with
your model for simulation and
code generation

“Block Authoring and Simulation
Integration” (Simulink)

“External Code Integration”
(Simulink Coder)

rtwdemos, select Model
Architecture and Design >
External Code Integration

Generate code for on-target
rapid prototyping on specific
embedded microprocessors and
IDEs

“Deploy Generated Component
Software to Application Target
Platforms”

In rtwdemo_vxworks

 Validation and Verification for System Development

1-21

matlab:rtwdemo_counter
matlab:rtwdemo_counter_msvc
matlab:rtwdemo_fcnprotoctrl
matlab:rtwdemo_cppclass
matlab:rtwdemo_async
matlab:rtwdemos
matlab:rtwdemo_vxworks

Generate Application Code

Goals Related Product Information Examples
Optimize generated ANSI® C
code for production (for
example, disable floating-point
code, remove termination and
error handling code, and
combine code entry points into
single functions)

“Performance” (Simulink Coder)

“Performance”

rtwdemos, select Performance

Optimize code for a specific run-
time environment, using
specialized function libraries

“Code Replacement” (Simulink
Coder)

“Code Replacement”

“Code Replacement
Customization”

“Optimize Generated Code By
Developing and Using Code
Replacement Libraries -
Simulink®”

Control the format and style of
generated code

“Model Configuration
Parameters: Code Style”

rtwdemo_parentheses

Control comments inserted into
generated code

“Model Configuration
Parameters: Comments”

rtwdemo_comments

Enter special instructions or
tags for postprocessing by third-
party tools or processes

“Customize Post-Code-
Generation Build Processing”
(Simulink Coder)

rtwdemo_buildinfo

Include requirements links in
generated code

“Review and Maintain
Requirements Links” (Simulink
Requirements)

rtwdemo_requirements

Trace model blocks and
subsystems to generated code
and vice versa

“Code Tracing”

“Standards, Guidelines, and
Block Usage”

rtwdemo_comments
rtwdemo_hyperlinks

Integrate existing externally
written code with code
generated for a model

“Block Authoring and
Simulation Integration”
(Simulink)

“External Code Integration”

rtwdemos, select Model
Architecture and Design >
External Code Integration

1 Product Overview

1-22

matlab:rtwdemos
matlab:rtwdemo_parentheses
matlab:rtwdemo_comments
matlab:rtwdemo_buildinfo
matlab:rtwdemo_requirements
matlab:rtwdemo_comments
matlab:rtwdemo_hyperlinks
matlab:rtwdemos

Goals Related Product Information Examples
Verify generated code for
MISRA Ca and other run-time
violations

“MISRA C Guidelines”

“Polyspace Bug Finder”

“Polyspace Code Prover”

Protect the intellectual property
of component model design and
generated code

Generate a binary file (shared
library)

“Reference Protected Models
from Third Parties” (Simulink)

“Package Generated Code as
Shared Libraries”

Generate a MEX-file S-function
for a model or subsystem so
that it can be shared with a
third-party vendor

“Generate S-Function from
Subsystem” (Simulink Coder)

Generate a shared library for a
model or subsystem so that it
can be shared with a third-party
vendor

“Package Generated Code as
Shared Libraries”

Test generated production code
with an environment or plant
model to verify a conversion of
the model to code

“Software-in-the-Loop
Simulation”

“Test Generated Code with SIL
and PIL Simulations”

Create an S-function wrapper
for calling your generated
source code from a model
running in Simulink

“Write Wrapper S-Function and
TLC Files” (Simulink Coder)

Set up and run SIL tests on your
host computer

“Software-in-the-Loop
Simulation”

“Test Generated Code with SIL
and PIL Simulations”

a. MISRA® and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA Consortium.

 Validation and Verification for System Development

1-23

Integrate and Verify Software

Goals Related Product Information Examples
Integrate existing externally
written C or C++ code with a
model for simulation and code
generation

“Block Authoring and
Simulation Integration”
(Simulink)

“External Code Integration”

rtwdemos, select Model
Architecture and Design >
External Code Integration

Connect to data interfaces for
generated C code data
structures

“Data Exchange Interfaces”
(Simulink Coder)

“Data Exchange Interfaces”

rtwdemo_capi
rtwdemo_asap2

Control the generation of code
interfaces so that external
software can compile, build, and
invoke the generated code

“Function and Class Interfaces” rtwdemo_fcnprotoctrl
rtwdemo_cppclass

Export virtual and function-call
subsystems

“Generate Component Source
Code for Export to External
Code Base”

rtwdemo_exporting_functi
ons

Include target-specific code “Code Replacement” (Simulink
Coder)

“Code Replacement”

“Code Replacement
Customization”

“Optimize Generated Code By
Developing and Using Code
Replacement Libraries -
Simulink®”

Customize and control the build
process

“Build Process Customization”
(Simulink Coder)

rtwdemo_buildinfo

Create a zip file that contains
generated code files, static files,
and dependent data to build the
generated code in an
environment other than your
host computer

“Relocate Code to Another
Development Environment”
(Simulink Coder)

rtwdemo_buildinfo

Integrate software components
as a complete system for testing
in the target environment

“Target Environment
Verification”

1 Product Overview

1-24

matlab:rtwdemos
matlab:rtwdemo_capi
matlab:rtwdemo_asap2
matlab:rtwdemo_fcnprotoctrl
matlab:rtwdemo_cppclass
matlab:rtwdemo_exporting_functions
matlab:rtwdemo_exporting_functions
matlab:rtwdemo_buildinfo
matlab:rtwdemo_buildinfo

Goals Related Product Information Examples
Generate source code for
integration with specific
production environments

“Code Generation” (Simulink
Coder)

“Code Generation”

rtwdemo_async
“AUTOSAR Workflow Samples”
(AUTOSAR Blockset)

Integrate code for a specific
run-time environment, using
specialized function libraries

“Code Replacement” (Simulink
Coder)

“Code Replacement”

“Code Replacement
Customization”

“Optimize Generated Code By
Developing and Using Code
Replacement Libraries -
Simulink®”

Enter special instructions or
tags for postprocessing by third-
party tools or processes

“Customize Post-Code-
Generation Build Processing”
(Simulink Coder)

rtwdemo_buildinfo

Integrate existing externally
written code with code
generated for a model

“Block Authoring and
Simulation Integration”
(Simulink)

“External Code Integration”
(Simulink Coder)

rtwdemos, select Model
Architecture and Design >
External Code Integration

Connect to data interfaces for
the generated C code data
structures

“Data Exchange Interfaces”
(Simulink Coder)

“Data Exchange Interfaces”

rtwdemo_capi
rtwdemo_asap2

Schedule the generated code “Timers” (Simulink Coder)

“Time-Based Scheduling”
(Simulink Coder)

“Event-Based Scheduling”
(Simulink Coder)

“Time-Based Scheduling
Example Models” (Simulink
Coder)

Verify object code files in a
target environment

“Software-in-the-Loop
Simulation”

“Test Generated Code with SIL
and PIL Simulations”

 Validation and Verification for System Development

1-25

matlab:rtwdemo_async
matlab:rtwdemo_buildinfo
matlab:rtwdemos
matlab:rtwdemo_capi
matlab:rtwdemo_asap2

Goals Related Product Information Examples
Set up and run PIL tests on your
target system

“Processor-in-the-Loop
Simulation”

“Test Generated Code with SIL
and PIL Simulations”

“Configure Processor-In-The-
Loop (PIL) for a Custom Target”

“Create a Target
Communication Channel for
Processor-In-The-Loop (PIL)
Simulation”

See the list of supported
hardware for the Embedded
Coder product on the
MathWorks Web site, and then
find an example for the related
product of interest

1 Product Overview

1-26

https://www.mathworks.com/hardware-support.html?fq=product:EC
https://www.mathworks.com/hardware-support.html?fq=product:EC

Integrate, Verify, and Calibrate System Components

Goals Related Product Information Examples
Integrate the software and its
microprocessor with the
hardware environment for the
final embedded system product

Add the complexity of the
environment (or plant) under
control to the test platform

Test and verify the embedded
system or control unit by using
a real-time target environment

“Deploy Algorithm Model for
Real-Time Rapid Prototyping”
(Simulink Coder)

“Deploy Environment Model for
Real-Time Hardware-In-the-
Loop (HIL) Simulation”
(Simulink Coder)

“Deploy Generated Standalone
Executable Programs To Target
Hardware”

“Deploy Generated Component
Software to Application Target
Platforms”

Generate source code for HIL
testing

“Code Generation” (Simulink
Coder)

“Code Generation”

“Deploy Environment Model for
Real-Time Hardware-In-the-
Loop (HIL) Simulation”
(Simulink Coder)

Conduct hard real-time HIL
testing using PCs

“Simulink Real-Time” “Create and Run Real-Time
Application from Simulink
Model” (Simulink Real-Time)
“Real-Time Simulation and
Testing” (Simulink Real-Time)

Tune ECU properly for its
intended use

“Data Exchange Interfaces”
(Simulink Coder)

“Data Exchange Interfaces”

rtwdemo_capi
rtwdemo_asap2

 Validation and Verification for System Development

1-27

matlab:rtwdemo_capi
matlab:rtwdemo_asap2

Goals Related Product Information Examples
Generate ASAP2 data files “Export ASAP2 File for Data

Measurement and Calibration”
(Simulink Coder)

rtwdemo_asap2

Generate C API data interface
files

“Exchange Data Between
Generated and External Code
Using C API” (Simulink Coder)

rtwdemo_capi

1 Product Overview

1-28

matlab:rtwdemo_asap2
matlab:rtwdemo_capi

Target Environments and Applications
In this section...
“About Target Environments” on page 1-29
“Types of Target Environments” on page 1-29
“Applications of Supported Target Environments” on page 1-31

About Target Environments
The code generator produces make or project files to build an executable program for a
specific target environment. The generated make or project files are optional. If you
prefer, you can build an executable program for the generated source files by using an
existing target build environment, such as a third-party integrated development
environment (IDE). Applications of generated code range from calling a few exported C or
C++ functions on a development computer to generating a complete executable program
that uses a custom build process for custom hardware, in an environment completely
separate from the development computer running MATLAB and Simulink.

The code generator provides built-in system target files that generate, build, and execute
code for specific target environments. These system target files offer varying degrees of
support for interacting with the generated code to log data, tune parameters, and
experiment with or without Simulink as the external interface to your generated code.

Types of Target Environments
Before you select a system target file, identify the target environment on which you
expect to execute your generated code. The most common target environments include
environments listed in this table.

 Target Environments and Applications

1-29

Target
Environment

Description

Development
computer

The computer that runs MATLAB and Simulink. A development computer is a
PC or UNIX®a environment that uses a non-real-time operating system, such
as Microsoft Windows® or Linux®b. Non-real-time (general purpose) operating
systems are nondeterministic. For example, those operating systems might
suspend code execution to run an operating system service and then, after
providing the service, continue code execution. Therefore, the executable for
your generated code might run faster or slower than the sample rates that you
specified in your model.

Real-time simulator A different computer from the development computer. A real-time simulator
can be a PC or UNIX environment that uses a real-time operating system
(RTOS), such as:

• Simulink Real-Time system
• A real-time Linux system
• A Versa Module Eurocard (VME) chassis with PowerPC® processors

running a commercial RTOS

The generated code runs in real time. The exact nature of execution varies
based on the particular behavior of the system hardware and RTOS.

A real-time simulator connects to a development computer for data logging,
interactive parameter tuning, and Monte Carlo batch execution studies.

Embedded
microprocessor

A computer that you eventually disconnect from a development computer and
run as a standalone computer as part of an electronics-based product.
Embedded microprocessors range in price and performance, from high-end
digital signal processors (DSPs) to process communication signals to
inexpensive 8-bit fixed-point microcontrollers in mass production (for
example, electronic parts produced in the millions of units). Embedded
microprocessors can:

• Use a full-featured RTOS
• Be driven by basic interrupts
• Use rate monotonic scheduling provided with code generation

a. UNIX is a registered trademark of The Open Group in the United States and other countries.
b. Linux is a registered trademark of Linus Torvalds.

1 Product Overview

1-30

https://en.wikipedia.org/wiki/RTOS
https://en.wikipedia.org/wiki/RTOS
https://www.mathworks.com/products/simulink-real-time.html
https://en.wikipedia.org/wiki/Rate-monotonic_scheduling

A target environment can:

• Have single- or multiple-core CPUs
• Be a standalone computer or communicate as part of a computer network

You can deploy different parts of a Simulink model on different target environments. For
example, it is common to separate the component (algorithm or controller) portion of a
model from the environment (or plant). Using Simulink to model an entire system (plant
and controller) is often referred to as closed-loop simulation and can provide many
benefits, such as early verification of a component.

The following figure shows example target environments for code generated for a model.

C
o

d
e

g
e

n
e

ra
ti

o
n

Algorithm model

Host

executable

System model

Host computer(s)

Embedded

microprocessor

Real-time

simulator

Environment model

C
o

d
e

g
e

n
e

ra
ti

o
n

C
o

d
e

g
e

n
e

ra
ti

o
n

Applications of Supported Target Environments
This table lists ways that you can apply code generation technology in the context of the
different target environments.

Application Description
Development Computer

 Target Environments and Applications

1-31

Application Description
“Acceleration” (Simulink) Techniques to speed up the execution of

model simulation in the context of the
MATLAB and Simulink environments.
Accelerated simulations are especially
useful when run time is long compared
to the time associated with compilation
and checking whether the target is up to
date.

Rapid Simulation (Simulink Coder) Execute code generated for a model in
non-real-time on the development
computer, but outside the context of the
MATLAB and Simulink environments.

Shared Object Libraries Integrate components into a larger
system. You provide generated source
code and related dependencies for
building a system in another
environment or in a shared library to
which other code can dynamically link.

“Protect Models to Conceal Contents” (Simulink Coder) Generate a protected model for use by a
third-party vendor in another Simulink
simulation environment.

Real-Time Simulator
Real-Time Rapid Prototyping (Simulink Coder) Generate, deploy, and tune code on a

real-time simulator connected to the
system hardware, for example, physical
plant or vehicle. being controlled.
Crucial for validating whether a
component can control the physical
system.

Shared Object Libraries Integrate generated source code and
dependencies for components into a
larger system that is built in another
environment. You can use shared library
files for intellectual property protection.

1 Product Overview

1-32

Application Description
Hardware-in-the-Loop (HIL) Simulation (Simulink Coder) Run a simulation that pairs physical

hardware, such as a controller, with a
virtual real-time implementation of
physical components on a real-time
target computer, including a plant,
sensors, actuators, and the environment.
Use HIL simulations to test and validate
physical hardware and a controller
algorithm by including the effects of
component response in real time to
realistic stimuli. Testing commonly
compares the HIL simulation results to
system requirements. Validation
compares HIL simulation results to user
requirements. Often HIL simulations are
referred to as closed-loop simulations
due to the component response to the
physical environment stimuli.

Embedded Microprocessor
“Code Generation” From a model, generate code that is

optimized for speed, memory usage,
simplicity, and compliance with industry
standards and guidelines.

“Software-in-the-Loop Simulation” Compile generated or external source
code intended for production and
execute the code as a separate process
from the rest of the Simulink model on
your development computer. Goals
include initial source code testing and
verification by comparing SIL and model
simulation results or comparing SIL
results to requirements by using back-to-
back testing. Commonly used with
external code integration, bit-accurate
fixed-point math, and coverage analysis.

 Target Environments and Applications

1-33

Application Description
“Processor-in-the-Loop Simulation” Cross-compile generated or external

source code intended for production on a
development computer, and then
download and run the object code on a
target processor or an equivalent
instruction set simulator. Goals include
verification by comparing PIL simulation
results against model or SIL simulation
results and collecting execution time
profiling data. Commonly used with
external code integration, bit-accurate
fixed-point math, and coverage analysis.

Hardware-in-the-loop (HIL) Simulation (Simulink Coder) Run a simulation that pairs physical
hardware, such as a controller, with a
virtual real-time implementation of
physical components on a real-time
target computer, including a plant,
sensors, actuators, and the environment.
Use HIL simulations to test and validate
physical hardware and a controller
algorithm by including the effects of
component response in real time to
realistic stimuli. Testing commonly
compares the HIL simulation results to
system requirements. Validation
compares HIL simulation results to user
requirements. Often HIL simulations are
referred to as closed-loop simulations
due to the component response to the
physical environment stimuli.

1 Product Overview

1-34

MATLAB Tutorials

• “Embedded Coder Capabilities for Code Generation from MATLAB Code”
on page 2-2

• “Controlling C Code Style” on page 2-9
• “Include Comments in Generated C/C++ Code” on page 2-15

2

Embedded Coder Capabilities for Code Generation from
MATLAB Code

The Embedded Coder product extends the MATLAB Coder product with capabilities that
you can use for embedded software development. You can generate code that has the
clarity and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time simulators, on-
target rapid prototyping boards, microprocessors used in mass production, and
embedded systems.

• Customize the appearance of generated code.
• Optimize generated code for application-specific requirements.
• Enable tracing options that help you to verify the generated code.

The Embedded Coder product extends the MATLAB Coder product with the following
options and optimizations for C/C++ code generation.

Goal Project Setting Code Configuration
Object Property

More Information

Execution Time
Control generation of
floating-point data and
operations

Support only
purely-integer
numbers

PurelyIntegerCode N/A

Simplify array indexing
in loops in the
generated code

Simplify array
indexing

EnableStrengthReduct
ion

“Simplify Multiply
Operations for Array
Indexing in Loops”

Replace functions and
operators in the
generated code to meet
application-specific
code requirements

Code replacement
library on the
Custom Code tab

CodeReplacement‐
Library

Embedded Coder
offers additional
libraries and the ability
to create and use
custom code. See
“Code Replacement
Customization”.

2 MATLAB Tutorials

2-2

Goal Project Setting Code Configuration
Object Property

More Information

Create and register
application-specific
implementations of
functions and operators

N/A N/A “Code Replacement
Customization”

Code Appearance
Specify use of single-
line or multiline
comments in the
generated code

Comment Style CommentStyle “Specify Comment
Style for C/C++ Code”

Include MATLAB source
code as comments with
traceability tags. In the
code generation report,
the traceability tags link
to the corresponding
MATLAB source code

MATLAB source
code as comments

MATLABSourceComments “Include Comments in
Generated C/C++
Code” on page 2-15

Generate MATLAB
function help text in the
function banner

MATLAB function
help text

MATLABFcnDesc “Include Comments in
Generated C/C++
Code” on page 2-15

Convert if-elseif-else
patterns to switch-case
statements

Convert if-elseif-
else patterns to
switch-case
statements

ConvertIfToSwitch “Controlling C Code
Style” on page 2-9

Specify that the extern
keyword is included in
declarations of
generated external
functions

Preserve extern
keyword in function
declarations

PreserveExtern‐
InFcnDecls

N/A

Specify the level of
parenthesization in the
generated code

Parentheses ParenthesesLevel N/A

 Embedded Coder Capabilities for Code Generation from MATLAB Code

2-3

Goal Project Setting Code Configuration
Object Property

More Information

Specify whether to
replace multiplications
by powers of two with
signed left bitwise shifts
in the generated code

Use signed shift left
for fixed-point
operations and
multiplication by
powers of 2

EnableSignedLeftShif
ts

“Control Signed Left
Shifts in Generated
Code”

Specify whether to
allow signed right
bitwise shifts in the
generated code

Allow right shifts on
signed integers

EnableSignedRightShi
fts

N/A

Control data type casts
in the generated code

Casting mode on the
All Settings tab

CastingMode “Control Data Type
Casts in Generated
Code”

Specify the indent style
for the generated code

Indent style on the
All Settings tab
Indent size on the
All Settings tab

IndentStyle
IndentSize

“Specify Indent Style
for C/C++ Code”

Specify the maximum
number of columns
before a line break in
the generated code

Column limit on the
All Settings tab

ColumnLimit N/A

Specify custom names
for MATLAB data types
in generated code

Enable custom data
type replacement

EnableCustomReplacem
entTypes
ReplacementTypes

“Customize Data Type
Replacement”

Import custom data
type definitions from
external header files

Import custom
types from external
header files

IsExtern
HeaderFiles

“Import Custom Data
Type Definitions from
External Header Files”

Customize generated
C/C++ file names

Generated source
and header file
name format

CustomFileNameStr “Customize C/C++ File
Names Generated from
MATLAB Code”

Customize generated
global variable
identifiers

Global variables CustomSymbolStr‐
GlobalVar

“Customize Generated
Identifiers”

Customize generated
global type identifiers

Global types CustomSymbolStrType “Customize Generated
Identifiers”

2 MATLAB Tutorials

2-4

Goal Project Setting Code Configuration
Object Property

More Information

Customize generated
field names in global
type identifiers

Field name of
global types

CustomSymbolStrField “Customize Generated
Identifiers”

Customize generated
local functions
identifiers

Local functions CustomSymbolStrFcn “Customize Generated
Identifiers”

Customize generated
identifiers for local
temporary variables

Local temporary
variables

CustomSymbolStr‐
TmpVar

“Customize Generated
Identifiers”

Customize generated
identifiers for constant
macros

Constant macros CustomSymbolStrMacro “Customize Generated
Identifiers”

Customize generated
identifiers for EMX
Array types
(Embeddable mxArray
types)

EMX Array Types CustomSymbolStr‐
EMXArray

“Customize Generated
Identifiers”

Customize generated
identifiers for EMX
Array (Embeddable
mxArrays) utility
functions

EMX Array Utility
Functions

CustomSymbolStrEMX‐
ArrayFcn

“Customize Generated
Identifiers”

Customize function
interface in the
generated code

Initialize function
required on the All
Settings tab
Terminate function
required on the All
Settings tab

IncludeInitializeFcn
IncludeTerminateFcn

N/A

 Embedded Coder Capabilities for Code Generation from MATLAB Code

2-5

Goal Project Setting Code Configuration
Object Property

More Information

Customize file and
function banners

N/A CodeTemplate • “Generate Custom
File and Function
Banners for C/C++
Code”

• “Code Generation
Template Files for
MATLAB Code”

Control declarations
and definitions of global
variables in the
generated code

N/A N/A • “Storage Classes
for Code
Generation from
MATLAB Code”

• “Control
Declarations and
Definitions of
Global Variables in
Code Generated
from MATLAB
Code”

Debugging
Generate a static code
metrics report including
generated file
information, number of
lines, and memory
usage

Static code metrics GenerateCodeMetrics‐
Report

“Generating a Static
Code Metrics Report
for Code Generated
from MATLAB Code”

Generate a code
replacement report that
summarizes the
replacements used from
the selected code
replacement library

Code replacements GenerateCode‐
ReplacementReport

• “Verify Code
Replacement
Library”

2 MATLAB Tutorials

2-6

Goal Project Setting Code Configuration
Object Property

More Information

Highlight single-
precision, double-
precision, and
expensive fixed-point
operations in the code
generation report

Highlight potential
data type issues

HighlightPotential‐
DataTypeIssues

“Highlight Potential
Data Type Issues in a
Report”

Custom Code
Replace functions and
operators in the
generated code to meet
application-specific
code requirements

Code replacement
library

CodeReplacement‐
Library

Embedded Coder
offers additional
libraries and the ability
to create and use
custom code. See
“Code Replacement
Customization”.

Create and register
application-specific
implementations of
functions and operators

N/A N/A “Code Replacement
Customization”

Verification
Interactively trace
between MATLAB
source code and
generated C/C++ code

Enable Code
Traceability

EnableTraceability “Interactively Trace
Between MATLAB
Code and Generated
C/C++ Code”

Verify generated code
using software-in-the-
loop and processor-in-
the-loop execution

N/A VerificationMode “Code Verification
Through Software-in-
the-Loop and
Processor-in-the-Loop
Execution”

Debug code during
software-in-the-loop
execution

Enable source-level
debugging for SIL
on the Debugging
pane

SILDebugging “Debug Generated
Code During SIL
Execution”

 Embedded Coder Capabilities for Code Generation from MATLAB Code

2-7

Goal Project Setting Code Configuration
Object Property

More Information

Profile execution times
during software-in-the-
loop and processor-in-
the-loop execution

Enable entry point
execution profiling
for SIL/PIL on the
Debugging pane

CodeExecution‐
Profiling

“Execution Time
Profiling for SIL and
PIL”

Verify and profile ARM
optimized code

Hardware Board on
the Hardware pane

Hardware • “PIL Execution with
ARM Cortex-A at
the Command Line”

• “PIL Execution with
ARM Cortex-A by
Using the MATLAB
Coder App”

Run Polyspace®

verification on
generated C/C++ code
by using the integrated
workflow

N/A N/A “Polyspace Verification
of C/C++ Code
Generated by MATLAB
Coder”

2 MATLAB Tutorials

2-8

Controlling C Code Style
In this section...
“About This Tutorial” on page 2-9
“Copy File to a Local Working Folder” on page 2-10
“Open the MATLAB Coder App” on page 2-10
“Specify Source Files” on page 2-10
“Define Input Types” on page 2-11
“Check for Run-Time Issues” on page 2-11
“Configure Code Generation Parameters” on page 2-12
“Generate C Code” on page 2-12
“View the Generated Code” on page 2-12
“Finish the Workflow” on page 2-13
“Key Points to Remember” on page 2-14

About This Tutorial
Learning Objectives

This tutorial shows you how to:

• Generate code for if-elseif-else decision logic as switch-case statements.
• Generate C code from your MATLAB code using the MATLAB Coder app.
• Configure code generation configuration parameters in the MATLAB Coder project.
• Generate a code generation report that you can use to trace between the original

MATLAB code and the generated C code.

Required Products

This tutorial requires the following products:

• MATLAB
• MATLAB Coder
• C compiler

 Controlling C Code Style

2-9

MATLAB Coder locates and uses a supported installed compiler. See Supported and
Compatible Compilers on the MathWorks website.

You can use mex -setup to change the default compiler. See “Change Default
Compiler” (MATLAB).

Required Files

Type Name Description
Function code test_code_style.m MATLAB example that uses

if-elseif-else.

Copy File to a Local Working Folder
1 Create a local working folder, for example, c:\ecoder\work.
2 Change to the matlabroot\help\toolbox\ecoder\examples folder. At the

MATLAB command prompt, enter:

cd(fullfile(docroot, 'toolbox', 'ecoder', 'examples'))
3 Copy the file test_code_style.m to your local working folder.

Open the MATLAB Coder App
On the MATLAB Toolstrip Apps tab, under Code Generation, click the MATLAB Coder
app icon.

The app opens the Select Source Files page.

Specify Source Files
1 On the Select Source Files page, type or select the name of the entry-point function

test_code_style.m.
2 In the Project location field, change the project name to code_style.prj.
3 Click Next to go to the Define Input Types step. The app analyzes the function for

coding issues and code generation readiness. If the app identifies issues, it opens the
Review Code Generation Readiness page where you can review and fix issues. In
this example, because the app does not detect issues, it opens the Define Input
Types page.

2 MATLAB Tutorials

2-10

https://www.mathworks.com/support/compilers.html
https://www.mathworks.com/support/compilers.html

Define Input Types
Because C uses static typing, at compile time, the code generator must determine the
properties of all variables in the MATLAB files. Therefore, you must specify the properties
of all function inputs. To define the properties of the input x:

1 Click Let me enter input or global types directly.
2 Click the field to the right of x.
3 From the list of options, select int16. Then, select scalar.
4 Click Next to go to the Check for Run-Time Issues step.

Note The Convert if-elseif-else patterns to switch-case statements
optimization works only for integer and enumerated type inputs.

Check for Run-Time Issues
The Check for Run-Time Issues step generates a MEX file from your entry-point
functions, runs the MEX function, and reports issues. This step is optional. However, it is
a best practice to perform this step. Using this step, you can detect and fix run-time
errors that are harder to diagnose in the generated C code. By default, the MEX function
includes memory integrity checks. These checks perform array bounds and dimension
checking. The checks detect violations of memory integrity in code generated for
MATLAB functions. For more information, see “Control Run-Time Checks” (MATLAB
Coder).

1 To open the Check for Run-Time Issues dialog box, click the Check for Issues
arrow .

2 In the Check for Run-Time Issues dialog box, enter code that calls
test_code_style with an example input. For this example, enter
test_code_style(int16(4)).

3 Click Check for Issues.

The app generates a MEX function. It runs the MEX function with the example input.
If the app detects issues during the MEX function generation or execution, it provides
warning and error messages. Click these messages to navigate to the problematic
code and fix the issue. In this example, the app does not detect issues.

 Controlling C Code Style

2-11

4 Click Next to go to the Generate Code step.

Configure Code Generation Parameters
1 To open the Generate dialog box, click the Generate arrow .
2 Set the Build type to Static Library (.lib).
3 Click More settings and set these settings:

• On the Code Appearance tab, select the Convert if-elseif-else patterns to
switch-case statements check box.

• On the Debugging tab, make sure that Always create a report is selected.
• On the All Settings tab, make sure that Enable code traceability is selected.

Generate C Code
Click Generate.

When code generation is complete, the code generator produces a C static library,
test_code_style.lib, and C code in the /codegen/lib/test_code_style
subfolder. The code generator provides a link to the report.

View the Generated Code
1 To open the code generation report, click the View Report link.

The test_code_style function is displayed in the code pane.
2 To view the MATLAB code and the C code next to each other, click Trace Code.
3 In the MATLAB code, place your cursor over the statement if (x == 1).

The report traces if (x == 1) to a switch statement.

2 MATLAB Tutorials

2-12

Finish the Workflow
Click Next to open the Finish Workflow page.

The Finish Workflow page indicates that code generation succeeded. It provides a
project summary and links to the generated output.

 Controlling C Code Style

2-13

Key Points to Remember
• To check for run-time issues before code generation, perform the Check for Run-

Time Issues step.
• To access build configuration settings, on the Generate Code page, open the

Generate dialog box, and then click More Settings.

See Also

More About
• “Generate C Code by Using the MATLAB Coder App” (MATLAB Coder)
• “Generate C Code at the Command Line” (MATLAB Coder)
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code”

2 MATLAB Tutorials

2-14

Include Comments in Generated C/C++ Code
In this section...
“About This Tutorial” on page 2-15
“Creating the MATLAB Source File” on page 2-15
“Configuring Build Parameters” on page 2-16
“Generating the C Code” on page 2-16
“Viewing the Generated C Code” on page 2-17
“Tracing the Generated Code to the MATLAB Code” on page 2-17

About This Tutorial
Learning Objectives

This tutorial shows you how to generate code that includes:

• The function signature and function help text in the function banner.
• MATLAB source code as comments with traceability tags. In the code generation

report, the traceability tags link to the corresponding MATLAB source code.

Prerequisites

To complete this tutorial, you must have these products:

• MATLAB
• MATLAB Coder
• Embedded Coder
• C compiler

For a list of supported compilers, see https://www.mathworks.com/support/
compilers/current_release/.

Creating the MATLAB Source File
In a writable folder, create a copy of the tutorial file.
copyfile(fullfile(docroot, 'toolbox', 'ecoder', 'examples', 'polar2cartesian.m'))

 Include Comments in Generated C/C++ Code

2-15

polar2cartesian

function [x y] = polar2cartesian(r,theta)
%#codegen
% Convert polar to Cartesian
x = r * cos(theta);
y = r * sin(theta);

Configuring Build Parameters
Create a coder.EmbeddedCodeConfig code generation configuration object and set
these properties to true:

• GenerateComments to allow comments in the generated code.
• MATLABSourceComments to generate MATLAB source code as comments with

traceability tags. In the code generation report, the tags link to the corresponding
MATLAB code. When this property is true, the code generator also produces the
function signature in the function banner.

• MATLABFcnDesc to generate the function help text in the function banner.

cfg = coder.config('lib', 'ecoder', true);
cfg.GenerateComments = true;
cfg.MATLABSourceComments = true;
cfg.MATLABFcnDesc = true;

Generating the C Code
To generate C code, call the codegen function. Use these options:

• -config to pass in the code generation configuration object cfg.
• -report to create a code generation report.
• -args to specify the class, size, and complexity of the input parameters.

codegen -config cfg -report polar2cartesian -args {0, 0}

codegen generates a C static library, polar2cartesian.lib, and C code in the /
codegen/lib/polar2cartesian subfolder. Because you selected report generation,
codegen provides a link to the report.

2 MATLAB Tutorials

2-16

Viewing the Generated C Code
View the generated code in the code generation report.

1 To open the code generation report, click View report.
2 In the Generated Code pane, click polar2cartesion.c.

The generated code includes:

• The function signature and function help text in the function banner.
• Comments containing the MATLAB source code that corresponds to the generated

C/C++ code. The comment includes a traceability tag that links to the original
MATLAB code.

The generated function banner also depends on the code generation template (CGT) file.
With the default CGT, the code generator places information about the arguments in the
function banner. You can customize the function banner by modifying the CGT. See
“Generate Custom File and Function Banners for C/C++ Code”.

Tracing the Generated Code to the MATLAB Code
Traceability tags provide information and links that help you to trace the generated code
back to the original MATLAB code. For example, click the traceability tag that precedes
the code x = r * cos(theta);.

 Include Comments in Generated C/C++ Code

2-17

The report opens polar2cartesian.m and highlights line 4.

To view the MATLAB source code and generated C/C++ code next to each other and to
interactively trace between them, in the report, click Trace Code. See “Interactively
Trace Between MATLAB Code and Generated C/C++ Code”.

See Also

More About
• “Specify Comment Style for C/C++ Code”
• “Tracing Generated C/C++ Code to MATLAB Source Code” (MATLAB Coder)
• “Interactively Trace Between MATLAB Code and Generated C/C++ Code”
• “Code Generation Template Files for MATLAB Code”
• “Generate Custom File and Function Banners for C/C++ Code”

2 MATLAB Tutorials

2-18

Simulink Code Generation Tutorials

• “Generate C Code from Simulink Models” on page 3-2
• “Generate Code by Using Embedded Coder Quick Start” on page 3-6
• “Configure Data Interface” on page 3-11
• “Configure a Model Parameter as a Global Variable for Tuning During Run Time”

on page 3-17
• “Compare Model Simulation and Generated Code Results” on page 3-20
• “Deploy the Generated Code” on page 3-25
• “Getting Started with Embedded Coder” on page 3-28

3

Generate C Code from Simulink Models
In this section...
“Prerequisites” on page 3-2
“Example Models” on page 3-2

Use the Embedded Coder product to generate C or C++ code that is optimized for
deployment on rapid-prototyping boards, embedded processors, or microprocessors. If
you are new to Embedded Coder or your application code customization requirements are
minimal, you can use graphical tools and default code configuration settings to quickly
generate production-quality code. If you need to produce customized code for integration
with existing external code or you want to meet code guidelines and standards, tooling is
available to configure the code generator to meet requirements for interfacing, code
appearance, packaging, and optimizations.

Generating and reviewing code for deployment to an embedded system can be as simple
as preparing the model for code generation with the Quick Start tool. Then, with code
tools accessible from the Simulink Editor, you can configure code interfaces, initiate code
generation, and review the generated code.

Prerequisites
To complete this tutorial, you must have:

• MATLAB
• MATLAB Coder
• Simulink
• Simulink Coder
• Embedded Coder

Example Models
The tutorial uses example models rtwdemo_roll and rtwdemo_roll_harness. The
models have been verified for simulation.

Open model rtwdemo_roll.

3 Simulink Code Generation Tutorials

3-2

This model implements a basic roll axis autopilot algorithm, which controls the aileron
position of an aircraft.

 Generate C Code from Simulink Models

3-3

The model represents one component in the greater control system of an aircraft.
Through the HDG_Mode signal, the control system places the model in one of two
operating modes: roll attitude hold or heading hold. The RollAngleReference and
HeadingMode subsystems calculate a roll attitude setpoint that supports one of the
operating modes. Then, the BasicRollMode subsystem, a PID controller, calculates an
aileron position command based on the setpoint and on feedback that indicates the
measured roll attitude and rate of change. The model is designed to operate at 40 Hz.

The tutorial uses model rtwdemo_roll_harness to test rtwdemo_roll.

You will learn how to:

3 Simulink Code Generation Tutorials

3-4

1 Generate code by using the Embedded Coder Quick Start tool.
2 Configure the data interface.
3 Configure a model parameter as a global variable for tuning during run time.
4 Compare model simulation and generated code results for numeric equivalency.
5 Deploy the generated code.

To start the tutorial, see “Generate Code by Using Embedded Coder Quick Start” on page
3-6.

 Generate C Code from Simulink Models

3-5

Generate Code by Using Embedded Coder Quick Start
Model rtwdemo_roll represents an autopilot control system for an aircraft. You prepare
rtwdemo_roll for embedded code generation by using Embedded Coder Quick Start,
which chooses fundamental code generation settings based on your goals and application.

1 Open model rtwdemo_roll.

2 Save a copy of the model to a writable location on the search MATLAB path.
3 If the C Code tab is not already open, in the Apps gallery, under Code Generation,

click Embedded Coder.
4 On the C Code tab, click Quick Start.

3 Simulink Code Generation Tutorials

3-6

5 Advance through the steps of the Quick Start tool. Each step asks questions about the
code that you want to generate. For this tutorial, use the defaults that are already
selected. The tool validates your selections against the model and presents the
parameter changes required to generate code.

6 In the Generate Code step, apply the proposed changes and generate code from
rtwdemo_roll by clicking Next.

7 Click Finish, then return to the C Code tab. From this tab you can configure code
generation customizations, and then check the results in the Code view next to the
model.

 Generate Code by Using Embedded Coder Quick Start

3-7

The generated code appears in two primary files: rtwdemo_roll.c and
rtwdemo_roll.h. In your MATLAB current folder, the rtwdemo_roll_ert_rtw folder
contains these primary files.

In your current folder, the code generator creates the slprj folder. This folder contains
the rtwtypes.h file, which defines standard data types that the generated code uses by
default. In general, this sibling folder contains generated files that can or must be shared
between multiple models.

The code that you generate from a model includes entry-point functions, which you call
from your application code. For a rate-based model, these functions include an
initialization function, an execution function, and, optionally, terminate and reset

3 Simulink Code Generation Tutorials

3-8

functions. The functions exchange data with your application code through a data
interface that you control.

Open the Code Mappings editor by clicking Code Mappings below the model diagram.
On the Functions tab, you can see the individual entry-point functions that the code
generator produces. You call these generated functions from external code or from a
version of a generated main function that you modify. For the base-rate step function of a
rate-based model and for step functions for export function models, you can customize the
function name and arguments.

Review the list of entry-point functions that the code generator produces for the model.
Use this view to selectively specify for each function a function customization template
(code definition) and name. For this tutorial, the code generator uses default (shipped)
settings for the customization template and entry-point function names. The code
generator names the initialize function rtwdemo_roll_initialize and the execution
(step) function rtwdemo_roll_step. Both entry-point functions have a void-void
interface (they pass no arguments). The functions gain access to data through shared
data structures. Examples of such data include system-level input and output that the
functions exchange with application code.

To see these entry-point functions in the generated code:

1 On the right side of the Simulink Editor window, in the Code view pane, locate the
search bar.

2 In the search bar, type rtwdemo_roll_step. To find each instance of the step
function name across the generated code files, click the search suggestion.

 Generate Code by Using Embedded Coder Quick Start

3-9

3 Use the arrows on the right to step through each instance, including the step
function definition in rtwdemo_roll.c and the declaration in rtwdemo_roll.h.
You can also see the number of search hits in each file from the file menu in the
upper left corner.

4 Repeat these search steps to locate the initialize function,
rtwdemo_roll_initialize in the generated code.

Next, configure the data interface for code generation and review the generated code.

3 Simulink Code Generation Tutorials

3-10

Configure Data Interface
Embedded Coder reduces the effort for configuring data and function interfaces by
providing a way to specify default configurations for categories of data elements and
functions across a model. Applying default configurations can save time and reduce the
risk of introducing errors in code, especially for larger models and models from which you
generate multi-instance code. After applying default configurations, you can selectively
override the default settings for individual data elements and functions.

Customize the data interface of model rtwdemo_roll by configuring function
roll_control_step to:

• Read input data from global variables that are declared and defined in external files
roll_input_data.h and roll_input_data.c.

• Write output data to global variables that the code generator declares in
output_data.h and defines in output_data.c.

To make these changes, in the MATLAB Command Window, copy these external code files
to your current MATLAB working folder.
copyfile(fullfile(matlabroot,'toolbox','rtw','rtwdemos','roll_input_data.c'));
copyfile(fullfile(matlabroot,'toolbox','rtw','rtwdemos','roll_input_data.h'));
copyfile(fullfile(matlabroot,'toolbox','rtw','rtwdemos','roll_heading_mode.c'));
copyfile(fullfile(matlabroot,'toolbox','rtw','rtwdemos','roll_heading_mode.h'));

The data interface configuration changes that you make depend on these files being
accessible for code generation and the build process. The build process compiles the
generated code with the code that is in these files.

Configure Default Code Generation for Data
Configure default code generation configurations for model inports and outports.

1 Configure Inport blocks at the root level of the model to appear in the generated code
as separate global variables defined by external code. In the Code Mappings editor,
on the Data Defaults tab, for category Inports, set Storage Class to
ImportFromFile.

 Configure Data Interface

3-11

With this setting, the generated code does not define global variables that represent
the inport data. Instead, a #include statement includes a header file that declares
the input variables. You specify the name of the header file with the Property
Inspector.

2 Open the Property Inspector. In the lower-right corner of the Simulink Editor window,
click the Property Inspector tab.

3 In the Property Inspector, set property HeaderFile to roll_input_data.h.

4 To see how the extern declarations in external header file roll_input_data.h
name the input variables, in the MATLAB Command Window, open
roll_input_data.h located in your current working folder.

extern boolean_T AP_Eng;
extern real32_T HDG_Ref;
extern real32_T Rate_FB;
extern real32_T Phi;
extern real32_T Psi;

3 Simulink Code Generation Tutorials

3-12

extern real32_T TAS;
extern real32_T Turn_Knob;

5 Configure the code generation naming rule for global variables. By default, the code
generator names global variables with the prefix rt. For the code generator to
produce code that matches the external variable declarations in
roll_input_data.h, configure the code generation naming rule for global
variables accordingly.

a Open the Model Configuration Parameters dialog box. In the toolstrip, on the C
Code tab, click Settings.

b Navigate to the Code Generation > Identifiers pane.
c Set parameter Global variables to the naming rule NM (remove the rt prefix).

Token $N represents the name of a data element in the model, for example, the
name of an Inport or Outport block. Token $M represents name-mangling text
that the code generator inserts, if necessary, to avoid name collisions with other
global variables in the code.

d Apply the change.
6 Configure Outport blocks at the root level of the model to appear in the generated

code as separate global variables. In the Code Mappings editor, on the Data
Defaults tab, for category Outports, set Storage Class to ExportToFile.

The generated code declares and defines the output variables in header and
definition files that you specify with the Property Inspector.

7 In the Property Inspector, specify the names for the generated header and definition
files. Set property HeaderFile to roll_output_data.h and property
DefinitionFile to roll_output_data.c.

8 Configure code generation for the model to include the external source files
roll_input_data.c and roll_heading_mode.c. In the Configuration Parameters
dialog box, set Code Generation > Custom Code > Additional build information
> Source files to roll_input_data.c roll_heading_mode.c. Then, click Apply
and OK.

9 Save the model. Regenerate the code by clicking Build.

A compiler error indicates that variable HDG_Mode is not declared. That variable is
not declared in header file roll_output_data.h, which you declared as the default
header file for inports. You fix this error in the next section of this tutorial.

The model is configured to open the code generation report after code generation is
complete. Minimize this report window for exploration later in this tutorial.

 Configure Data Interface

3-13

10 You configured Inport blocks to use an external header file to declare and define
input variables. In the Code view, confirm that the generated code includes this
external header file by searching for roll_input_data.h.

11 Search for the root level Inport block name, HDG_Ref. As you type, choose the search
suggestion with the green V icon. This search suggestion finds instances of HDG_Ref
used as a variable in the generated code. Confirm that HDG_Ref is defined as a
separate global variable.

12 In the model, rtwdemo_roll, click the Outport block Ail_Cmd. The Code view
highlights code in rtwdemo_roll.c that corresponds to the block. In the code, place
your cursor over the ellipsis menu above the output variable Ail_Cmd. The
traceability dialog box displays variable definitions and model elements that
correspond to the code. The dialog box confirms that Ail_Cmd is defined as a
separate global variable. Click the definition code to see the definition in
output_data.c.

3 Simulink Code Generation Tutorials

3-14

Override Default Settings for Individual Data Elements
The settings that you choose for a category under Data Defaults apply to elements in
that category across a model. To override the default settings for an individual data
element, use the Model Data Editor.

When you generated code after configuring default settings for inports and outports, a
compiler error indicated that variable HDG_Mode is not declared. You can fix that error by
overriding the default configuration for Inport block HDG_Mode.

1 Open the Model Data Editor. On the Modeling tab, click Model Data Editor.
2 In the Model Data Editor, on the Inports/Outports tab, select source HDG_Mode.
3 Set Storage Class to ImportFromFile and Header File to

roll_heading_mode.h.

 Configure Data Interface

3-15

Based on these settings, the code generator imports the declaration for external
variable HDG_Mode from header file roll_heading_mode.h.

extern boolean_T HDG_Mode;
4 Save the model and regenerate the code.

Minimize the code generation report window for exploration later in this tutorial.
5 In the Code view, search for roll_heading_mode.h and confirm that it is included

in the generated code with the default configuration file roll_input_data.h.
6 Search for HDG_Mode and confirm that it is defined as a separate global variable.

Next, configure a model parameter to be a global variable in the generated code. As a
global variable, you can tune the parameter value at run time.

3 Simulink Code Generation Tutorials

3-16

Configure a Model Parameter as a Global Variable for
Tuning During Run Time

By default, code generation optimizations eliminate storage for model parameters and
most signals that do not participate in the entry-point function interface. To make
parameters tunable and related signals accessible, identify them by configuring them
explicitly.

In the BasicRollMode subsystem of model rtwdemo_roll, configure a PID control
parameter to appear in the code as a global variable whose value you can tune.

1 Open the BasicRollMode subsystem.

2 In the Model Data Editor, select the Parameters tab.
3 In the filter field, type IntGain. The Model Data Editor shows a row that

corresponds to the Gain parameter and a row that corresponds to a workspace
variable.

 Configure a Model Parameter as a Global Variable for Tuning During Run Time

3-17

4 In the Source column, click IntGain. That Gain block appears highlighted in the
model diagram.

5 In the Name column, click the model workspace variable intGain.
6 Convert the model workspace variable to a parameter object. In the Storage Class

column, select Convert to parameter object. The Storage Class setting
changes to Model default, which indicates that the parameter object prevents
code generation optimizations from eliminating storage for the variable. With this
setting, the object uses the storage class specified in the Code Mappings editor as the
data default for category Model parameters.

7 Save the model and regenerate the code.

Minimize the code generation report window for exploration later in this tutorial.
8 In the Code view:

• Search for intGain.
• In rtwdemo_roll.c, place your cursor over the ellipsis menu over the P in the

highlighted code P.intGain. In the model editor, notice that the Code view
highlights the block corresponding to the generated code.

3 Simulink Code Generation Tutorials

3-18

• To see the parameter object definition for intGain in rtwdemo_roll_data.c,
click the definition code in the dialog box.

The code that you generate from the model stores the parameter object in memory.
Because you left the default storage class settings in the Code Mapping Editor for
category Model parameters set to Default, the code generator determines the storage
format, for example, as fields of structures.

Next, use a test harness model and software-in-the-loop (SIL) simulation to compare
results of model simulation and generated code.

 Configure a Model Parameter as a Global Variable for Tuning During Run Time

3-19

Compare Model Simulation and Generated Code Results
In this section...
“Inspect and Configure Test Harness Model” on page 3-20
“Simulate the Model in Normal Mode” on page 3-21
“Simulate the Model in SIL Mode” on page 3-23
“Compare Simulation Results” on page 3-23

In this step of the tutorial, you verify that when executed, the code is numerically
equivalent to the algorithm modeled in Simulink. You use a test harness model to simulate
rtwdemo_roll in normal mode and in SIL mode, then compare the simulations by using
the Simulation Data Inspector.

To test generated code, you can run software-in-the-loop (SIL) and processor-in-the-loop
(PIL) simulations. A SIL simulation compiles and runs the generated code on your
development computer. A PIL simulation cross-compiles source code on your development
computer. The PIL simulation then downloads and runs the object code on a target
processor or an equivalent instruction set simulator. You can use SIL and PIL simulations
to:

• Verify the numeric behavior of your code.
• Collect code coverage and execution-time metrics.
• Optimize your code.
• Progress toward achieving IEC 61508, IEC 62304, ISO 26262, EN 50128, or DO-178
certification.

Inspect and Configure Test Harness Model
Model rtwdemo_roll_harness references the model-under-test, rtwdemo_roll,
through a Model block. The harness model generates test inputs for the referenced
model. You can easily switch the Model block between the normal, SIL, or PIL simulation
modes.

3 Simulink Code Generation Tutorials

3-20

1 Open model rtwdemo_roll_harness. If you closed your copy of model
rtwdemo_roll, reopen it.

2 In the rtwdemo_roll_harness model, right-click the Model block and select
Subsystem & Model Reference > Refresh Selected Model Block.

3 Save a copy of rtwdemo_roll_harness in the current working folder.
4 Open the Configuration Parameters dialog boxes for rtwdemo_roll_harness and

rtwdemo_roll.
5 To run SIL and PIL simulations, on the Code Generation pane, verify that parameter

Generate code only is cleared. Do this for both models.
6 For both models, on the Hardware Implementation pane, expand Device details.

Verify that Support long long is selected.
7 Click OK. Then, save the models.

Simulate the Model in Normal Mode
Run the harness model in normal mode and capture the results in the Simulation Data
Inspector.

1 In the rtwdemo_roll_harness model, open the Model Data Editor. On the
Modeling tab, click Model Data Editor.

2 In the Model Data Editor, select the Signals tab.
3 Set the Change view list to Instrumentation.

 Compare Model Simulation and Generated Code Results

3-21

4 In the data table, select all rows.
5 To configure signals to log simulation data to the Simulation Data Inspector, select a

cleared check box in the Log Data column. When you are finished, make sure that all
of the check boxes in the column are selected.

6 Right-click the Model block, Roll Axis Autopilot. From the context menu, select
Block Parameters.

7 In the Block Parameters dialog box, for Simulation mode, verify that the Normal
option is selected. Click OK.

8 Simulate rtwdemo_roll_harness.
9 When the simulation is done, view the simulation results in the Simulation Data

Inspector. If the Simulation Data Inspector is not already open, on the Simulation
tab, click Data Inspector.

10 For the most recent (current) run, double-click the run name field and rename the
run: roll_harness: Normal mode.

11 Select Ail_Cmd to plot the signal.

3 Simulink Code Generation Tutorials

3-22

Simulate the Model in SIL Mode
The SIL simulation generates, compiles, and executes code on your development
computer. The Simulation Data Inspector logs results.

1 In the rtwdemo_roll_harness model window, right-click the Roll Axis
Autopilot model block and select Block Parameters.

2 In the Block Parameters dialog box, set Simulation mode to Software-in-the-
loop (SIL) and Code Interface to Top model. Click OK.

3 Exclude external code files from the build process. In the Configuration Parameters
dialog box for model rtwdemo_roll, set Code Generation > Custom Code >
Additional build information > Source files to the default value, which is empty.
Save the model.

4 Simulate the rtwdemo_roll_harness model.

Minimize the code generation report window for exploration later in this tutorial.
5 In the Simulation Data Inspector, double-click the run name field and rename the new

run as roll_harness: SIL mode.
6 Select Ail_Cmd to plot the signal.
7 Reconfigure the build process for model rtwdemo_roll to include the external

source files roll_input_data.c and roll_heading_mode.c. In the Model
Configuration Parameters dialog box, set Code Generation > Custom Code >
Additional build information > Source files to roll_input_data.c
roll_heading_mode.c. Click Apply, close the dialog box, and save the model.

Compare Simulation Results
In the Simulation Data Inspector:

1 Click the Compare tab.
2 In the Baseline field, select roll_harness: Normal mode.
3 In the Compare To field, select roll_harness: SIL mode.
4 Click Compare.

 Compare Model Simulation and Generated Code Results

3-23

The Simulation Data Inspector shows that the normal mode and SIL mode results match.
Comparing the results of normal mode simulation with SIL and PIL simulations can help
you verify that the generated application performs as expected.

Next, explore ways that you can deploy generated code.

3 Simulink Code Generation Tutorials

3-24

Deploy the Generated Code
In this step of the tutorial, you explore mechanisms for deploying the generated code.

Example Main Program
To facilitate deployment of the generated code, the code generator produces an example
main program that you can use to get started. The example main program is in the file
ert_main.c. To use the algorithmic code (the model entry-point functions) generated for
your application, you can copy the incomplete functions defined in ert_main.c, and then
complete the functions by inserting your custom scheduling code.

Explore the example main program generated for model rtwdemo_roll.

1 If not already open, open your copy of the model rtwdemo_roll.
2 In the Apps gallery, click Embedded Coder.
3 Regenerate the code.
4 In the Code view, select file ert_main.c.
5 Click in the Search field and select function rt_OneStep.
6 Explore the incomplete wrapper function rt_OneStep. This function calls the model

execution entry-point function, rtwdemo_roll_step. Your application code can call
rt_OneStep to run the model algorithm during each execution cycle.

7 Click in the Search field and select function main.
8 Explore the incomplete example main function. This function outlines the order and

context in which your application code can call rt_OneStep and other model entry-
point functions.

For more information, see “Deploy Generated Standalone Executable Programs To Target
Hardware”.

Relocate Generated Code Files
Embedded Coder provides a pack-n-go utility for relocating static and generated code
files for a model to another development environment. File relocation is necessary when
your system or integrated development environment (IDE) does not include MATLAB and
Simulink products. The utility packages the files in a compressed file that you can
relocate and unpack by using a standard zip utility. You can apply the pack-n-go utility

 Deploy the Generated Code

3-25

from graphical and programming interfaces. For more information, see “Relocate Code to
Another Development Environment”.

Share and Archive Code Generation Report
The Quick Start tool configures a model to produce an HTML code generation report. In
addition to a summary of model and code information, the report includes:

• A subsystem report
• Generated code files
• A code interface report
• A traceability report
• A static code metrics report
• A code replacements report
• Optionally, a model web view

You can use this report outside of the Simulink environment, so it is suitable for sharing
or for archival purposes. You can open the report from the tool or, on the C Code tab,
click Open Latest Report.

The default location for the code generation report files is in the html subfolder of the
build folder, model_target_rtw/html/. target is the name of the System target file
specified on the Code Generation pane. The default name for the top-level HTML report
file is model_codegen_rpt.html or subsystem_codegen_rpt.html.

3 Simulink Code Generation Tutorials

3-26

Explore Other Options
Use these links to explore more ways to customize, verify, and deploy generated
production code.

Task Reference
Quickly generate readable, efficient code
from your model

“Generate Code by Using the Quick Start
Tool”

Consider model design and configuration
for code generation

“Design Models for Generated Embedded
Code Deployment”

Learn about generated entry-point
functions

“Configure Code Generation for Model
Entry-Point Functions”

Achieve code reuse “Choose a Componentization Technique for
Code Reuse”

Specify default configurations for
categories of data elements and functions
across a model

“Configure Default C Code Generation for
Categories of Model Data and Functions”

Override default configurations for
individual entry-point functions

“Override Default Naming for Individual C
Entry-Point Functions” and “Override
Default C Step Function Interface”

Override default configurations for
individual data elements

“Apply Storage Classes to Individual Signal,
State, and Parameter Data Elements” and
“Apply Built-In and Customized Storage
Classes to Data Elements”

Compare normal mode simulation results
against software-in-the-loop (SIL) or
processor-in-the-loop (PIL) simulation
results for numerical equivalency

“SIL and PIL Simulations” and “Choose a
SIL or PIL Approach”

Collect code coverage metrics for
generated code during SIL or PIL
simulation

“Code Coverage”

Use generated example main code as a
starting point to deploy generated
executable programs

“Deploy Generated Standalone Executable
Programs To Target Hardware”

 Deploy the Generated Code

3-27

Getting Started with Embedded Coder
This model shows an implementation of a roll axis autopilot control system, that is
designed for code generation.

About the Model

This model represents a basic roll axis autopilot with two operating modes: roll attitude
hold and heading hold. The mode logic for these modes is external to this model. The
model architecture represents the heading hold mode and basic roll attitude function as
atomic subsystems.

The roll attitude control function is a PID controller that uses roll attitude and roll rate
feedback to produce an aileron command. The input to the controller is either a basic roll
angle reference or a roll command to track the desired heading. The model is as follows:

open_system('rtwdemo_roll');

3 Simulink Code Generation Tutorials

3-28

Subsystem RollAngleReference

The basic roll angle reference calculation is implemented as the subsystem
RollAngleReference. Embedded Coder® inlines this calculation directly into the main
function for rtwdemo_roll.

open_system('rtwdemo_roll/RollAngleReference');

Subsystem HeadingMode

The subsystem HeadingMode computes the roll command to track the desired heading.

close_system('rtwdemo_roll/RollAngleReference');
open_system('rtwdemo_heading');

 Getting Started with Embedded Coder

3-29

Subsystem BasicRollMode

The subsystem BasicRollMode computes the roll attitude control function (PID).

close_system('rtwdemo_heading');
open_system('rtwdemo_attitude');

Generate Code for the Model

The model is preconfigured to generate code using Embedded Coder. To generate code
using Simulink Coder only, reconfigure the model or at the command prompt type
rtwconfiguredemo('rtwdemo_roll','GRT')

In your system temporary folder, create a temporary folder for the build process.

3 Simulink Code Generation Tutorials

3-30

currentDir = pwd;
[~,cgDir] = rtwdemodir();

Generate code.

rtwbuild('rtwdemo_roll');

Starting build procedure for model: rtwdemo_roll
Successful completion of build procedure for model: rtwdemo_roll

You can view the entire generated code in a detailed HTML report, with bi-directional
traceability between model and code.

web(fullfile(cgDir,'rtwdemo_roll_ert_rtw','html','rtwdemo_roll_codegen_rpt.html'))

Close models and return to previous working folder.

close_system('rtwdemo_roll',0)
close_system('rtwdemo_attitude',0)
close_system('rtwdemo_heading',0)

cd(currentDir);
rtwdemoclean;

Embedded Coder Getting Started Tutorials

For more information on generating code with Embedded Coder, see the Tutorials in the
Getting Started with Embedded Coder documentation.

 Getting Started with Embedded Coder

3-31

